返回首頁
當前位置: 主頁 > 教育技術學 > 資源收藏 >

法國天生的數學家龐加萊 生平簡介

時間:2019-11-05 23:08來源:知行網www.gbjajh.tw 編輯:麥田守望者

數學史話之天生的數學家龐加萊

亨利·龐加萊

于1854年出生在法國的南錫,他的祖父當年在拿破侖的手下當個了軍醫,1817年開始在魯昂定居。龐加萊的父親也是當地一個著名的醫生,還是南錫大學醫學院的教授,龐加萊的母親是個善良、才華出眾的女性,她把所有的精力都傾注在了孩子的教育上。龐加萊的叔叔有兩個孩子,其中之一就是前面說到的雷蒙·龐加萊。據說龐加萊的腦袋特別大,以至于希爾維斯特有一次見到他的時候,感覺到龐加萊的腦袋如同"水牛般大小"。龐加萊在5歲的時候,因為生了白喉而嚴重影響了健康,他只能待在家里,而不是跟小朋友們一起出去玩耍。

數學史話之天生的數學家龐加萊

美麗的南錫

龐加萊在家里的唯一娛樂就是閱讀,他的記憶力超強,一旦他讀過一本書--以一種不可思議的速度--他會終生都記得它。據說這叫視覺記憶或者空間記憶,歐拉也有這種記憶能力,不過比龐加萊稍微差點(在科普君的印象中,似乎sheldon也有這種能力)。不過龐加萊的視力非常差,這或許就是他記憶力好的一個原因,因為他在上課的時候根本看不清老師在黑板上寫的東西,所以只能靠聽,聽到多少都能記住。龐加萊自己就曾經說過:數學家都是天生的,而不是造就的(看到這句話,絕望不?)。龐加萊跟很多數學家一樣,總是處在一種心不在焉的狀態中,隨時都有可能無視眼前的一切,然后沉浸在自己的世界中而無法自拔。他從小學的時候就開始喜歡數學,而且他還有一個癖好:他在思考數學的時候,總是不停地在踱步,而且他要等一切都想好以后才會寫下來。1870年,龐加萊16歲的時候,普法戰爭爆發了,侵略者的行徑讓龐加萊成了一個堅定的愛國者,在這點上,和庫默爾有點類似。

數學史話之天生的數學家龐加萊

DR. Sheldon Cooper

1873年,龐加萊考入了巴黎綜合理工大學,據說當時考試的時候,主考人聽說了龐加萊的名聲,于是特地單獨給他設計了一套考題,但是龐加萊還是很快就做出來了,兩個人還很愉快地討論了這道題目。看來法國的數學主考人自從毀了伽羅瓦,又差點毀了埃爾米特之后,終于長了點記性了。

在巴黎綜合理工大學,龐加萊除了在數學上顯示了卓越的才氣之外,在其他方面簡直是慘不忍睹,包括體育、軍訓、繪畫等。龐加萊師從著名數學家查爾斯·厄米特,并發表了他第一篇學術論文。后來龐加萊繼續跟隨厄米特攻讀博士學位。1875年,龐加萊畢業后進入了南錫礦業大學繼續學習數學和采礦,畢業后,他加入了法國礦業集團成為法國東北部礦產區的一名巡視員,與此同時,龐加萊繼續在厄米特的指導下從事研究。

數學史話之天生的數學家龐加萊

巴黎綜合理工大學

龐加萊的創作時期就是從1878年他的博士論文開始的,一直到他1912年去世為止,在這34年的時間里,他一共創作了500多篇關于新數學的文章,另外還有30多部包括數理物理學、理論物理學和理論天文學的著作,這還不包括他的哲學名著和一些通俗文章。龐加萊從來都不是高斯那種"少點,但一定要成熟"的人。龐加萊的成果是如此的豐富,以至于想要把他的成果都說一遍的話,就得是第二個龐加萊,所以科普君在這里只對他的最著名的理論中選取那么幾個來簡單論述一下。

龐加萊第一個非常著名的研究領域是在微分方程理論方面,他把分析學的方法應用于微分方程。龐加萊在1878年創立自守函數理論,他引進了富克斯群和克萊因群,構造了更一般的。他利用后來以他的名字命名的級數構造了自守函數,并發現這種函數作為代數函數的單值化函數的效用。到了1880年,他發現了橢圓函數的推廣,并于1883年提出了一般的單值化定理。同年,他進而研究一般解析函數論,研究了整函數的虧格及其與泰勒展開的系數或函數絕對值的增長率之間的關系,它同皮卡定理構成后來的整函數及亞純函數理論發展的基礎。后來,龐加萊又發表了四篇關于微分方程所確定的積分曲線的論文,并以此創立了微分方程的定性理論。他研究了微分方程的解在四種類型的奇點(焦點、鞍點、結點、中心)附近的性態。他提出根據解對極限環(他求出的一種特殊的封閉曲線)的關系,可以判定解的穩定性。

數學史話之天生的數學家龐加萊

自守函數

這些東西都是他在30歲之前做的分析學中的一部分,然而他的研究內容遠不是一個分析學所能包括的,數論、代數、數理天文學都是他研究的對象。在數論中,他以幾何形式重新建立了雙二次形式的高斯理論。而在天文學中,由于在1885年瑞典國王奧斯卡二世設立"N體問題"獎,引起龐加萊研究天體力學問題的興趣。他首先解決了三體問題的周期解的問題,然后繼續深入研究,最終的成果給N體問題的解決以及動力系統的研究帶來巨大而無比深刻的影響:首先,他證明了對于N體問題在N>2時,不存在統一的第一積分。也就是說即使是一般的三體問題,也不可能通過發現各種不變量最終降低問題的自由度,把問題化簡成更簡單可以解出來的問題,這打破了當時很多人希望找到三體問題一般的顯式解的幻想。其次,他為了研究N體問題,發明了許多全新的數學工具。例如不變積分的概念,并且使用它證明了著名的回歸定理;第一回歸映象的概念,在后來的動力系統理論中被稱為龐加萊映象。特征指數,解對參數的連續依賴性等等。最后,龐加萊通過研究所謂的漸近解,同宿軌道和異宿軌道,發現即使在簡單的三體問題中,在這樣的同宿軌道或者異宿軌道附近,方程的解的狀況會非常復雜,以至于對于給定的初始條件,幾乎是沒有辦法預測當時間趨于無窮時,這個軌道的最終命運。這為后來混沌理論的創立打下了堅實的基礎,

數學史話之天生的數學家龐加萊

蝴蝶效應

龐加萊用括去法證明了狄利克雷問題解的存在性,這一方法后來促使位勢論有新發展。他還研究拉普拉斯算子的特征值問題,給出了特征值和特征函數存在性的嚴格證明。他在積分方程中引進復參數方法,促進了弗雷德霍姆理論的發展。龐加萊還發表了一系列論文,在論文中建立了組合拓撲學。他還引進貝蒂數、撓系數和基本群等重要概念,創造流形的三角剖分、單純復合形、重心重分、對偶復合形、復合形的關聯系數矩陣等工具,借助它們推廣歐拉多面體定理成為歐拉--龐加萊公式,并證明流形的同調對偶定理。

龐加萊被人稱為最后一個通才,他曾教授過的課程包括物理、實驗力學、數學物理、概率論、天體力學和天文學。一個有趣的小插曲足以證明龐加萊在當時的地位:當軍政部長下令砍掉"沒用的天文學"課程時,龐加萊說"我來教這門課",官員們就只好閉嘴了,因為誰也不敢阻攔龐加萊開設任何科學課程。

龐加萊的一生中在數學和物理的各個領域都有建樹,其中以其本人命名的科學發現就有龐加萊球面、龐加萊映射、龐加萊引理等。曾有人說:把一個微分幾何學家和廣義相對論學家從睡夢中搖醒,問他什么是龐加萊引理。假如答不出來,那他一定是假的。

最后,介紹一下龐加萊猜想:在一個三維空間中,假如每一條封閉的曲線都能收縮到一點,那么這個空間一定是一個三維的圓球。隨后,他又將這個猜想修改為:"任何與n維球面同倫的n維封閉流形必定同胚于n維球面。"這就是 "高維龐加萊猜想"。大于等于五維的龐加萊猜想被斯蒂芬·斯梅爾證明;四維的龐加萊猜想被邁克爾·弗里德曼證明;三維的龐加萊猜想被俄羅斯數學家佩雷爾曼于2002-2003年證明。另外說一下,這個佩雷爾曼是個神人,他因為證明了龐加萊猜想而獲得2006年的菲爾茲獎,但是他并沒有去領獎,他如同隱士一樣生活。

數學史話之天生的數學家龐加萊

佩雷爾曼

------分隔線----------------------------
標簽(Tag):法國天生的數學家 龐加萊
------分隔線----------------------------
推薦內容
猜你感興趣
黑龙江快乐十分20190730开奖结果